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Abstract
Phenotypic change plays diverse roles in species’ colonization, but most invasion studies target single species. To compare 
ecomorphological changes among co-invading species with overlapping niches, we examined three lizards on the island of 
O‘ahu (Anolis carolinensis, A. sagrei, Phelsuma laticauda). Using specimens from three decades of unfolding invasions 
obtained through museum collections and contemporary field work, we quantified shifts in three traits: snout vent length 
(SVL), forelimb-, and hindlimb-length (limb lengths relative to SVL). We hypothesized that competition among these three 
species has led to ecological shifts that will be detectable through morphological change. Overall, we found that unique 
patterns of phenotypic change were both species-specific and sex-specific within species: (1) male A. sagrei, female A. caro-
linensis, and male P. laticauda increased in SVL and (2) relative hindlimb length increased in female A. carolinensis since 
the 1980s. The observed changes involve traits that may be consequential to invasion dynamics. This study illustrates how 
museum- and field-based research can be integrated to document nuanced temporal patterns in the phenotypes of co-invading 
species that share similar niches in native ranges, raising questions about the underlying process(es) driving species- and 
sex-specific change in co-invaded systems.
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Introduction

Rapid shifts in behavior or morphology have been observed 
in many invasive species and may represent adaptive exploi-
tation of novel habitats (e.g., Avilés-Rodríguez & Kolbe, 
2019). Most prior research in this area focuses on elucidat-
ing the patterns and processes of post-invasive change within 
a single taxon, and/or how focal taxa impact native ecosys-
tems (Brown et al., 2013; Llewelyn et al., 2011; Phillips 
et al., 2006, 2010). However, when potential colonizers have 
overlapping niches, their impacts on novel ecosystems are 
dependent upon interactions among the co-invading species 
(Grosholz, 2005; Jackson, 2015; Mothes et al., 2019; Pringle 
et al., 2019; Stroud et al., 2020). Therefore, identifying pat-
terns and drivers of change within co-invaded systems can 
help illuminate features of invasion biology, since accelerat-
ing rates of species’ dispersal present growing opportunities 
for divergent species to establish in sympatry outside their 
native ranges (Mothes et al., 2019; Stroud et al., 2020).

Among the classic model systems for the study of rapid 
evolution (particularly in the context of invasion) are Car-
ibbean anole lizards (Jackman et al., 1999; Losos, 2009). 
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Decades of research suggest that anole morphology and 
behavior predictably evolve via local adaptation and niche 
partitioning among species (Losos, 2009; Losos et al., 1997; 
Yuan et al., 2020). Morphological changes are also observ-
able within Anolis species over very short time intervals 
(Donihue et al., 2018, 2020), with both selection and pheno-
typic plasticity known as driving forces subjacent to pheno-
typic change in Anolis (Kolbe & Losos, 2005; Losos et al., 
2000; Winchell et al., 2023). For example, vegetation struc-
ture and predators drove somewhat predictable evolution 
over just a few years’ time in A. sagrei, with founder effects 
limiting variability (Kolbe et al., 2012). Rapid morphologi-
cal change has also been observed in Caribbean anoles colo-
nizing urban niches (Winchell et al., 2016, 2023), suggesting 
that phenotypic change may play a role in exploiting novel 
habitats. Therefore, Anolis lizards are an excellent model 
to test rapid evolution following ecological change across 
various evolutionary pathways.

Anoles are capable of rapid phenotypic change with clear 
and diverse links to fitness, sometimes driven by heterospe-
cifics with overlapping niches. When introduced A. sagrei in 
the southern US encountered allopatric A. carolinensis, A. 
carolinensis shifted to higher perches and increased toepad 
size within 20 generations (Stuart et al., 2014). Introduced 
A. carolinensis have similarly undergone rapid morpho-
logical change in the Pacific Ogasawara Archipelago where 
hindlimb length increased relative to native Florida popula-
tions (Tamate et al., 2017). These changes are ecologically 
significant given the well-described relationships between 
focal (ecomorphological) traits, physiology, and habitat spe-
cialization in Anolis spp. (e.g., Calsbeek et al., 2007; Losos 
& Sinervo, 1989).

While pairwise interactions of A. sagrei and A. carolin-
ensis have been widely studied elsewhere (Campbell, 2000; 
Putman et al., 2020; Ryan & Gunderson, 2021), their inva-
sion into the Hawaiian Archipelago offers exciting poten-
tial contrasts to prior case studies on species invasions for 
several reasons: (1) Hawai‘i has no native herpetofauna, but 
now sustains large populations of both A. sagrei and A. caro-
linensis introduced in the twentieth century, among other liz-
ard species that were introduced following European contact 
with Hawai‘i (< 250 years BP), and to a lesser extent by the 
Polynesians who first colonized Hawai‘i less than 2000 years 
ago (McKeown, 1996). (2) Among the most common liz-
ards in the archipelago today is an introduced day-gecko 
from Madagascar (Phelsuma laticauda), which is ecologi-
cally similar to A. sagrei and A. carolinensis as a diurnal, 
arboreal, insectivorous lizard with adhesive toe pads (e.g., 
Wright et al., 2021). This co-invasion of three ecologically 
similar lizards presents an exciting opportunity to compare 
patterns of morphological change among co-invaders as a 
first step toward identifying the causes and consequences 
of rapid phenotypic change. Anolis carolinensis, A. sagrei, 

and Phelsuma laticauda each invaded and spread throughout 
Hawai‘i’s major islands relatively recently. Anolis carolinen-
sis first appeared in the 1940s following WWII, P. laticauda 
was intentionally introduced on O‘ahu in the 1970s, while 
A. sagrei, a common invader across the globe, (e.g., Kolbe 
et al., 2004, 2007) appeared in the 1980s (McKeown, 1996). 
Each species’ range expansion into Hawaii has been docu-
mented with varying consistency via specimens in natural 
history collections. These time series provide an opportunity 
to examine morphological change over the course of each 
colonization, and test for temporal shifts in ecomorphologi-
cal traits.

While niche partitioning and subsequent character dis-
placement has been well studied in anoles (Kamath et al., 
2020; Muensch et al., 2006), it is unclear how this will 
manifest in the presence of geckos (Stroud et al., 2019). 
For example, multiple Phelsuma species have co-invaded 
Florida (Fieldsend et al., 2021a, b; Meshaka et al., 2004) 
and now co-occur with both native (A. carolinensis) and 
introduced anoles (including A. sagrei), but their interactions 
are not well studied. Dynamics of Phelsuma ecology are 
generally understudied relative to anoles, although past work 
has found: (1) habitat partitioning in native ranges (Bungard 
et al., 2014; Hagey et al., 2016; Harmon et al., 2007; Noble 
et al., 2011), (2) interactions between introduced and native 
Phelsuma in the Comoros Islands (Augros et al., 2018), and 
(3) the introduction of non-native geckos (Hemidactylus fre-
natus) may impact endemic Phelsuma in Mauritius (Cole 
& Harris, 2011). Within Hawai‘i, P. laticauda may also be 
expanding their temporal niche, foraging near artificial lights 
after dark (Seifan et al., 2010), although these shifts may be 
more associated with light pollution than niche displace-
ment due to a competing species (Perry et al., 2008; Perry 
& Fisher, 2006). Regardless of whether ecological shifts in 
Hawai‘i’s introduced Phelsuma are driven by anoles or other 
factors, they might be predicted to drive plastic or evolution-
ary changes in ecomorphology that could be detected by 
measuring trait change over time.

Herein, we investigate how functional traits change over 
the course of species invasion for these three introduced 
lizards (A. sagrei, A. carolinensis, and P. laticauda). We 
used measurements from both natural history specimens 
and field-collected individuals from each species to assess 
ecomorphological variation. While our overarching goal 
was to compare morphological change among co-invaders, 
we also generated the following hypotheses concerning 
potential patterns of change. (1) Based on the dominance of 
introduced A. sagrei over native A. carolinensis in Florida 
(Campbell, 2000; Kamath & Stuart, 2015), we predicted 
that A. carolinensis would exhibit morphological change 
through time in co-invaded habitats. If A. carolinensis is 
being driven to higher perches (as seen in Florida) by com-
petitive exclusion from niches at lower heights, we predict 
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that recently collected specimens of this species will possess 
shorter limbs than counterparts from the earlier invasion 
stages; this would increase A. carolinensis’ ability to utilize 
narrower substrates found at greater heights in the under-
story. (2) Since Hawaiian populations of A. sagrei likely 
originated from Floridan populations which had adapted to 
out-compete A. carolinensis (Kolbe et al., 2004), we predict 
stasis for A. sagrei without ecomorphological change. 3) 
We hypothesized that P. laticauda’s adhesive adaptations 
might provide this species with access to habitats unavail-
able to sympatric invading anoles, and therefore mitigate 
competition between geckos and anoles within Hawai‘i. 
Therefore, we might also expect ecomorphological stasis as 
P. laticauda adapts to the Hawaiian ecosystem. However, the 
consequence(s) of Anolis-Phelsuma interactions cannot be 
clearly predicted due to a lack of empirical studies of niche 
partitioning between these species in field settings.

Methods

We measured specimens of Anolis carolinensis (N = 25 F, 
82 M), A. sagrei (N = 37 F, 67 M), and Phelsuma laticauda 
(N = 35 F, 19 M); all specimens in Suppl. Table 1. Speci-
mens were collected between 1961 and 2018, most after 
1999. Many specimens from the natural history collections 
were not accompanied by exact geographical coordinates, 
therefore we did not factor intra-island variation into our 
analyses. Museum specimens were supplemented by the 
authors’ field collection in 2018. While some specimens 
were collected on Kaua‘i in 2018 (Suppl. Table 1) and an 
effort was made to locate specimens from across the archi-
pelago (specimens found on Hawai‘i, Kaua‘i, Lana‘i, and 
Māui from UMMZ and MCZ were also measured, but not 
included in our analyses and are in Suppl. Table 1), the 
overwhelming majority of our specimens originated from 
the island of O‘ahu (Fig. 1). Consequently, our subsequent 
analyses only include collections from O‘ahu as opposed to 
all the islands.

In 2018, lizards were collected by hand or with noose-
poles under permit EX-18-09 from the Hawai‘i Department 
of Natural Land and Resources following IACUC approved 
protocols (Michigan State University: 04/18-062-00). All 
samples from 2018 were collected in areas where all three 
species were observed, and to the best of our knowledge the 
preserved specimens in this study came from higher traf-
ficked areas of O‘ahu where all three species would likely 
be present. Animals were euthanized using MS-222 (Conroy 
et al., 2009), fixed using formalin, and stored in 70% etha-
nol. Due to concerns over shrinkage in formalin-preserved 
specimens (Irschick et al., 1997; Losos & de Quieroz, 1997; 
Vervust et al., 2009, Maayan et al., 2022), live specimens 
collected in 2018 were measured in 2020, two years after 

formalin-preservation. To minimize measurement error, 
all measurements of both museum and field-sampled (then 
preserved) specimens were collected by a single inves-
tigator (JGP). We limited our analyses to adults based on 
previous work connecting body size (snout vent length or 
SVL) to sexual maturity (adults in A. carolinensis were 
defined to have SVL > 40 mm for females and > 45 mm for 
males (Michael, 1972). For A. sagrei, adults were defined 
to have > 34 mm SVL for females and > 39 mm for males, 
(Lee et al., 1989). For P. laticauda, adults were defined with 
SVL > 43 mm for females and > 40 mm for males (Zug, 
2013)).

Morphological measurements were based on characters 
found to be ecologically relevant in previous studies (Wil-
liams, 1983; Losos, 1994). Specifically, the measured traits 
were snout-vent-length (SVL) and both fore- and hindlimb 
lengths, measured in segments following previous studies 
(e.g., Donihue, 2016; Donihue et al., 2018; Hagey et al., 
2017; Littleford-Colquhoun et al., 2019; Losos & Miles, 
2002) and henceforth using the following abbreviations (see 
Fig. 2). H1: thigh length (from the point where hindlimb 
enters the body to apex of knee); H2: crus length (from apex 
of knee to center of ankle joint); H3: foot length (from center 
of ankle joint, measured on dorsal side, to tip of the fourth 
digit i.e. the longest toe including the claw); F1: brachium 
length (from axilla to apex of elbow joint); F2: antebrachium 
length (from apex of elbow joint to center of wrist joint, 
on dorsal side); and F3: hand length (from dorsal center of 

Fig. 1   Sampling localities for all specimens used in this study. Dots 
indicating sites are not proportional to the number of specimens col-
lected there (see Suppl. Table 1 for complete locality data)
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the wrist joint to tip of longest digit including the claw). 
For each individual lizard, we summed our forelimb seg-
ments (F1 + F2 + F3) to obtain total forelimb length and 
summed our hindlimb segments (H1 + H2 + H3) to obtain 
total hindlimb length. All limb measurements were taken 
on the right side of the body unless damage to toes or the 
limb prevented consistent measurement (whereupon the left 
limb was measured). All specimens were used regardless of 
year collected.

All analyses were conducted in R Studio (v. 1.1.463, 
RStudio Team, 2020) running R version 3.5.3. We first 
investigated whether it was necessary to partition specimens 
by sex to calculate residual limb lengths. After natural log 
transforming our SVL and total fore- and hindlimb length 
measurements, we used Welch’s two-sample t-test to com-
pare male and female mean SVL (Fig. 3). For each species, 
for both fore- and hindlimb length, we fit a linear model with 
limb length as our response variable and SVL as our predic-
tor variable. Residuals from this regression were extracted 
and we used one-sample, two-sided t-tests to compare male 
and female residual limb lengths in each species (Fig. 3). 
These analyses did not support null models in which limb 
allometries were sexually monomorphic, therefore we ana-
lyzed temporal shifts in these traits separately for males and 
for females in each focal taxon. These results also prompted 
estimation of fore- and hind- residual limb lengths for each 
sex (within each species) independently before analyzing 
morphological change over time. After estimating residual 
hindlimb lengths for each sex of each species (again using 
natural log transformed total limb length as a dependent 
variable on the explanatory variable natural log transformed 
SVL), we confirmed that our sex-specific limb residuals 
were normally distributed using Shapiro–Wilk tests.

Preliminary analyses revealed that SVL varies between 
sex in all three species, with males generally larger than 

females (A. carolinensis: t(47.5) =  − 19.1, p < 0.001; 
A. sagrei: t(86) =  − 14.5, p < 0.001; P. laticauda: 
t(26) =  − 4.69, p < 0.001; Fig. 3). After conducting species-
specific regressions of total fore- and hindlimb on SVL and 
extracting the residuals, we compared mean residual limb 
lengths of males and females within each species. This 
approach identifies sex differences in a subset of (residual) 
limb segments for some (but not all) of the focal species, 
which led us to analyze sex-specific residual limb lengths 
for each species (Table 1). We also considered an approach 
to detect sex-specific differences in species-specific residual 
limb lengths by comparing mean residual limb lengths of 
each sex to zero. This approach found similar results, with 
male and female mean residual fore- and hindlimb lengths 
in both A. carolinensis and P. laticauda as not significantly 
departing from zero (p-values > 0.5) suggesting no signifi-
cant sex-related differences in relative limb length. We con-
ducted two generalized linear mixed models (GLMMs) with 
total hind limb or total fore limb lengths as our dependent 
variables, and species and sex as fixed factors and log SVL 
nested within sex within species. We found similar results 
as the analyses we present in our paper, with species, sex, 
and SVL each significantly affecting both fore- and hindlimb 
lengths, hence justifying our decision to estimate sex and 
species-specific relative limb lengths for later analyses.

To investigate how SVL and residual limb length may 
have changed over time, we used both ANCOVAs and esti-
mated Spearman’s r. For each species, we fit a type-2 lin-
ear ANCOVA, with either SVL, residual forelimb length, 
or residual hindlimb length as our dependent variable. Our 
independent variables included sex and year as well as 
the interaction between sex and year. We also calculated 
Spearman’s r for both males and females of each species 
individually, quantifying the correlation between SVL 
and year, residual forelimb length and year, and residual 
hindlimb length and year. Unfortunately, given the nature 
of sporadic field collections, we were unable to ensure even 
sampling distribution across years and between sexes. This 
is a major limitation for many studies that rely on collections 
and demonstrates a need for more comprehensive sampling 
over time, especially in common species that are often a 
priori deemed less worthy of collecting. Since sampling 
was uneven across species, year, and sex (e.g., no female 
A. carolinensis in our dataset were collected after 2008), 
we sought to reduce leverage points where small sample 
sizes for certain categories might have undue influence over 
the trends observed. Therefore, outliers and influential data 
points were detected using Cook’s D (Suppl. Figure 1). We 
used a threshold value of 1.0 to evaluate if a point had undue 
leverage on the trend observed (Fox, 2002).

Fig. 2   Depiction of morphological features analyzed in this study. 
SVL (snout-vent-length): distance from the tip of nose to cloaca on 
ventral side of specimen. F1 (brachium length) distance from axilla 
to apex of elbow joint. F2 (antebrachium length): distance from apex 
of elbow joint to center of wrist joint on dorsal side. F3 (hand length): 
distance from dorsal center of wrist joint to tip of longest digit, 
including claw. H1 (thigh length): distance from where hindlimb 
enters body to apex of knee. H2 (crus length): distance from apex of 
knee to center of ankle joint. H3 (foot length): distance from center of 
ankle joint (on the dorsal side) to tip of longest digit including claw
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Results

In A. sagrei, mean female hindlimb residual length devi-
ated significantly from zero (t(32) = -2.1504, p = 0.04), while 
female forelimb length did not (t(32) = -1.75, p = 0.09). 
Neither A. sagrei male fore- nor hindlimb residual means 
deviated significantly from zero (fore: t(66) = 1.07, p = 0.3); 
hind: (t(66) = 1.3, p = 0.2). Together these results also sug-
gest sexual dimorphism in limb length in A. sagrei. Given 
the associations between sex and limb allometry in the data-
set, we used sex-specific residual limb lengths for all three 
species in the rest of our analyses (see Suppl. Figure 2). 
We evaluated the normality of these datasets (i.e., sex-spe-
cific residual limb lengths) using Shapiro–Wilk tests and 
found that all 12 sex-specific fore- and hindlimb datasets of 

residual lengths did not significantly deviate from a normal 
distribution. See Suppl. Figure 2 for additional data.
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Fig. 3   Welch’s two-sample t-tests to compare male and female mean 
SVL for Anolis carolinensis, A. sagrei, and Phelsuma laticauda from 
populations across O‘ahu (including sample sizes, regression and 

residual histogram plots, linear model results, and residual means and 
standard deviations)

Table 1   Sex-related differences in species-specific residuals in fore- 
and hindlimbs for three species of co-invasive lizards in Hawai‘i. 
t = t-statistic

Significant results are in bold

A. sagrei A. carolinensis P. laticauda

Forelimb df 72.31 29.2 51
t  − 2.04  − 0.38  − 0.42
p 0.05 0.7 0.67

Hindlimb df 72.3 29.4 47.2
t  − 2.5  − 0.38  − 0.27
p 0.01 0.71 0.79
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We found sex-specific significant changes in morphol-
ogy across time for each of our three focal species (Table 2, 
Fig. 4). Spearman’s r found an increase between SVL and 
year in A. sagrei males (p = 0.02, r = 0.28), A. carolinensis 
females (p = 0.02, r = 0.45) and P. laticauda males (p = 0.02, 
r = 0.52). No species exhibited change in relative forelimb 
lengths over time (Fig. 4). However, hindlimb length of 
female A. carolinensis increased over time (Fig. 4). Phel-
suma laticauda, A. sagrei, and male A. carolinensis showed 
no change in hindlimb size over time. However, these results 
should be interpreted cautiously due to previously mentioned 
limitations to our dataset. For example, we did not find the 
same results in male and female A. carolinensis but lacked 
female individuals from the 2018 field collection. Gaps like 
these further present the inability to determine if this trend 
is due to a populational stasis or a limitation of our dataset.

Discussion

Morphological Changes in Hawaii’s Co‑invading 
Lizards?

We found that each of our focal species displayed a differ-
ent suite of morphological changes in ecologically relevant 
traits during their co-invasion of Hawai‘i, which were also 
sex-specific. These rapid morphological changes could have 
functional consequences for Hawaii’s invasive lizards, given 
that changes in limb length have great ecological signifi-
cance in anoles. For example, longer hindlimbs generally 
confer greater running and jumping abilities on flat surfaces 
in anoles, whereas shorter hindlimbs typically increase sta-
bility when using arboreal perches (Losos & Sinervo, 1989). 
While we interpret these results cautiously, our findings of 
morphological changes in Hawai‘i’s invasive A. carolinensis 
(bigger females with longer hindlimbs) and A. sagrei (big-
ger males) contrast findings from previous studies elsewhere 
in these species’ ranges. Following experimental invasions, 
A. sagrei consistently developed significantly shorter limbs 
after just two years with no established native species for 
competition (Kolbe et al., 2012). However, Anolis sagrei 
also evolved longer limbs (both fore- and hind-) when 
encountering a different anole invader, A. cristatellus, where 
both are introduced in Florida, USA (only males measured; 
Stroud, 2018).

Forelimb length similarly increases in Anolis carolinensis 
(but shorter hindlimbs) when utilizing perches on smooth 
leaves than those on branches and tree trunks (Irschick et al., 
2005). During the field component of the present study, we 
often observed A. carolinensis on plants with smooth sur-
faces (e.g., Pandanus, found in P. laticauda’s native habitat). 
Unfortunately, we are unable to analyze the perch uses of the 
museum specimens in this study, and therefore cannot assess 

whether the morphological changes we observed correspond 
with historical changes in niche use. Biomechanical aspects 
of toe lamellae and pads in anoles and geckos are likely at 
play in this ecosystem (Winchell et al., 2018). When con-
sidering our observed shifts in A. carolinensis and A. sagrei 
morphology in light of previous work involving these spe-
cies, there are two main factors that could make the Hawai-
ian anoles different.

(1) Previous studies have focused on invasive A. sagrei 
interacting with native A. carolinensis, while in Hawai‘i, 
both species are introduced. Therefore, one possibility in our 
study is that colonizing A. carolinensis may have undergone 
a bottleneck and/or selection for ‘invasive’ traits whereas 
native populations would have greater genetic variation 
and would be already well-adapted to Hawai‘i. (2) Invasion 
pathways could also have had important impacts on our 
findings concerning A. sagrei. A species-wide analysis of 
this species found that one Hawaiian population contained 
haplotypes most similar to invasive populations in Florida, 
rather than haplotypes found within their native Cuba (Kolbe 
et al., 2004). This suggests that the original A. sagrei invad-
ers to Hawai‘i were in contact with native A. carolinensis 
populations prior to their arrival. Anolis carolinensis in 
Hawai‘i appear to have resulted from at least two introduc-
tions from the southern US (excepting peninsular Florida) 
and are distantly related to other invasive Pacific populations 
in Okinawa and the Ogasawara Islands (Suzuki-Ohno et al., 
2017).

While no one has yet examined fine-scale genetic diver-
sity in Hawaiian Phelsuma laticauda, our observed results 
may be due to a genetic bottleneck. We suspect this for three 
reasons: (1) Hawaiian P. laticauda are believed to have 
stemmed from one intentional introduction of eight individu-
als outside of Honolulu in 1974 (McKeown, 1996). While P. 
laticauda has been successfully introduced into other non-
native habitats (Kraus, 2009), The first records of introduced 
P. laticauda other than Hawai‘i were the Comoros in the 
late 1990s (Meirte, 1999) and French Polynesia in 2006 
(Ota & Ineich, 2006). Therefore, we are reasonably con-
fident that this founder population originated through the 
pet trade, originally from Madagascar. Without additional 
introduction events, Hawai‘i’s P. laticauda would have expe-
rienced a significant bottleneck which may have constrained 

Table 2   A summary of morphological changes in three species of co-
invasive lizards in Hawai‘i

Species SVL Forelimbs Hindlimbs

A. carolinensis Females 
increased

No change Females increased

A. sagrei Males increased No change No change
P. laticauda Males increased No change No change
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diversification and local adaptation. (2) Allometric studies 
of geckos in conjunction with rapid evolution have not been 
nearly as widespread as in anoles, so rates of adaptation are 
poorly understood in comparison to anoles. Therefore, the 
amount of time needed for morphological shifts to manifest 
may not yet have passed. 3) Finally, P. laticauda may be 
behaviorally dominant to both anole species and is not dis-
placed from its expected native niche when interacting with 
A. carolinensis and A. sagrei.

The second unique feature of our Hawaiian (co-invasion) 
case study is the presence of P. laticauda, which routinely 
appeared at higher perches than either anole in the field (pers 
obs). Specifically, we found that male P. laticauda forelimb 
lengths increased over time. The drivers and ecological 

impacts of this change are challenging to infer due to the 
lack of prior studies and context. While anole ecomor-
phology has been widely studied outside of Hawaii, it is 
unknown how morphological shifts, such as the observed 
forelimb changes, impact Phelsuma performance or niche 
use (but see Wright et al. (2021) on habitat shifts in experi-
mental enclosures). If the biomechanical and ecomorpho-
logical relationships reported from Caribbean anoles can 
be applied to Phelsuma, then the patterns described above 
could be indicative of adaptation to novel selective pressures 
(e.g., perches and textures and/or habitat partitioning with 
novel competitors in the invaded ecosystem). We observed 
antagonistic behaviors between Phelsuma and anoles dur-
ing our fieldwork, although other studies found low rates of 
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Hawaiian lizards (dark grey = males, light grey = females) obtained 
from museum and field specimens. SVL (left column), relative fore-
limb length (center column) and hindlimb length (right column) 
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interspecific aggression among Hawaiian anoles (Kennedy-
Gold, 2019). Since past work suggested native A. carolinen-
sis shift higher in trees in the presence of invasive A. sagrei, 
the presence of another high-perched lizard (P. laticauda) 
may have prevented this from occurring within Hawai‘i. 
Furthermore, the order in which communities assemble can 
influence downstream interactions (priority effect; MacAr-
thur, 1972, or incumbency Fukami, 2015). If A. carolinensis 
were the first of these species to colonize Hawai‘i (as is 
widely believed), they may have acclimated/adapted well 
in advance of Phelsuma or A. sagrei giving them a distinct 
toe(pad) hold.

In this work, we consider both anole species to be inva-
sive within Hawai‘i due to their widespread abundance 
and documented impacts on other novel ecosystems—pre-
dominantly due to predation and secondary trophic effects 
(Kraus, 2009 and sources within). The detrimental impacts 
of introduced P. laticauda have not yet been demonstrated 
in Hawai‘i, but Hawai‘i’s Department of Land and Natural 
Resources lists all species of Phelsuma as “injurious wild-
life” (dlnr.hawaii.gov), and the species occurs throughout 
much of the archipelago. In the Comoros Islands, intro-
duced P. laticauda appear to be dominant to native species 
of geckos (Carretero et al., 2005). However, as there are 
no native lizards to the Hawaiian Islands its designation is 
somewhat unclear in this respect.

Below we discuss the difficulties of disentangling 
phenotypic plasticity and selection as drivers of the pat-
terns reported herein. In principle, however, evolution-
ary changes (perhaps driven by interspecies interactions) 
might underlie some of our findings. The bulk of our spec-
imens were collected recently (1999–2018), comparable 
to the 20-generation span over which Stuart et al. (2014) 
found significant morphological changes in A. sagrei 
(although they looked at toepad size, which likely evolves 
at a different tempo that SVL and limb length). However, 
to determine the presence or magnitude of selection, we 
would need to incorporate future studies with genomic 
evidence, common garden experiments or both (de Vil-
lemereuil et al., 2016; Winchell et al., 2023). Importantly, 
these data only allow us to confidently evaluate morpho-
logical shifts that have occurred more recently as opposed 
to across the entire invasion of each species. Future work 
will benefit from the documentation of specimens dur-
ing the earliest stages of a species’ colonization, and we 
encourage curators to voucher specimens of non-native 
species during their earliest known occurrences in novel 
ecosystems. More comprehensive collections, together 
with genetic analyses, would help illuminate how plas-
ticity and evolution contribute to invasion dynamics dur-
ing each phase of staggered co-invasions by species with 
overlapping niches (Fieldsend et al., 2021a, 2021b; Kolbe 
et al., 2004, 2007).

Our 2018 field collection on Kaua‘i produced nine addi-
tional specimens (six male, three female) which had longer 
limbs than O‘ahu or Hawai‘i. It is noteworthy that these data 
suggest morphological differences between P. laticauda on 
different islands within Hawai‘i (Suppl. Table 1). This find-
ing warrants further study and we omitted the Kaua‘i speci-
mens (as well as other non-O‘ahu samples) in our analyses 
due to insufficient sample sizes and limited availability of 
museum specimens for this species. Sample sizes at either 
end of our time span (both pre-1999 and 2008–2018) are 
minimal, which may have placed undue leverage on these 
datapoints in driving the results of our analyses. This further 
illustrates the need for consistent collection through time of 
invaders such as these, and robust series in natural history 
collections can shed more light on the dynamics of evolution 
in a changing environment.

Potential (Co‑)drivers of Morphological Change

We suggest that competition among co-invading lizard taxa, 
and/or species- and sex-specific adaptations to the Hawaiian 
ecosystem might have driven the shifts in morphology that 
we report herein. However, some changes may also result 
from selection for dispersal. Calsbeek et al. (2009) found 
that small A. sagrei males disperse more often than larger 
conspecifics as dispersal behavior likely reduces male-male 
competition for territories. Selection for dispersal-related 
traits has been observed in Australia’s introduced cane toads, 
which evolved longer legs and other traits at the leading 
edge of their introduced range (Phillips et al., 2006, 2010). 
In cane toads, dispersal reduces resource competition due to 
higher abundance in novel prey at the invasion front (Brown 
et al., 2013).

Many local Hawaiians claimed to observe the brown 
anoles displacing green anoles, although the layman’s dif-
ficulty to distinguish between a brown A. carolinensis and an 
A. sagrei may limit the reliability of these reports. Further-
more, if A. sagrei were displacing A. carolinensis to higher 
perches, as seen in the southeastern United States (Edwards 
& Lailvaux, 2012; Stuart et al., 2014; Borden et al., 2022), 
this may make A. carolinensis less visible to the observer 
even if they remained present at unchanging density. Studies 
have also demonstrated that dispersal by A. carolinensis to 
novel islands is inhibited (if not prevented) by co-invading 
of A. sagrei (Losos & Spiller, 1999) but given A. carolinen-
sis’ earlier arrival in Hawai‘i, these phenomena may not be 
relevant in this system.
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Predation and Abiotic Selection as Other Potential 
Drivers of Morphological Change

Another factor driving our observed patterns in Hawaiian 
lizards could be a novel suite of predators. Shifts in limb 
length have been demonstrated in A. sagrei over a single 
generation in response to a predatory co-invasive lizard (Lei-
ocephalus carinatus) along with a shift to higher perches 
(Losos et al., 2006). Previous studies have identified domes-
tic/feral cats, basilisks, and whiptail lizards (Ameiva exsul) 
as potential predators of Florida anoles (Avilés-Rodríguez 
& Kolbe, 2019). Hawai‘i lacks any native lizards that could 
represent a threat, although it does have large numbers of 
feral cats, rats, and mongooses (pers. obs, Hess et al., 2007; 
Loope et al., 1988) some of which have been documented 
to consume lizards (species unidentified, Hill et al., 2019; 
Mostello & Conant, 2018). There are a few introduced liz-
ards that dwarf our focal species and may serve as potential 
predators. In particular, the Jackson’s Chameleon (Trioceros 
jacksonii), which has been highly problematic for endemic 
land snails (Chiaverano & Holland, 2014), is estimated to 
occur in high densities on at least one island (Kraus et al., 
2012). However, we did not observe this species in our sam-
pling sites as it generally occupies higher elevation, high 
canopy sites (Chiaverano & Holland, 2014). Hawai‘i is 
also home to a suite of invasive birds, some of which (e.g., 
mynahs and chickens) readily prey upon lizards in other eco-
systems (Oliver & Shaw, 1953; Cisneros-Heredía 2018; pers. 
obs). One example of a native owl consuming an unknown 
lizard was also found (Mostello & Conant, 2018). Another 
variable unaccounted for is tropical storms in the Pacific, 
which likely reflect additional selection forces (independ-
ent of competition between the co-invaders). Hurricanes can 
cause morphological change in Caribbean anoles (Donihue 
et al., 2020; Rabe et al., 2020) and are relatively frequent in 
the Hawaiian Islands. The flora of Hawai‘i also represent 
a heterogeneous mixture of native and non-native plants—
from both within and beyond the native ranges of our focal 
lizard species.

Conclusions

Species invasions are frequently viewed through a negative 
lens, yet they provide ideal natural experiments to under-
stand ecological shifts within colonizing populations. Our 
work demonstrates how museum specimens of invasive 
taxa can help illuminate these processes and highlights the 
importance of collecting and preserving non-native speci-
mens through all stages of invasion in service of future, 
retrospective case studies. This is an important message 
for biologists to broadcast among collectors and curators. 
Because biodiversity collection efforts are chiefly focused 

on native species, some collectors might not appreciate the 
potential utility of replicated sampling of invasives over 
space and/or through time.

By comparing museum and contemporary specimens 
from Hawai‘i we found distinctive patterns of morphological 
change over time among three species of arboreal, diurnal 
lizards. Based on prior research, we suggest that these may 
reflect outcomes of species- and sex-specific selection pres-
sures, some of which result from interactions among the co-
invading species. Testing of these scenarios awaits detailed 
field and/or experimental studies (e.g., Wright et al., 2021) 
that will be essential in advancing our understanding of how 
colonizing taxa interactively shape invasion outcomes.
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